- 1. If $f(x) = 9 x^2$ and g(x) = 3 x, which is the rule of function (f + g)(x)? [A] $-x^2 + x + 6$ [B] 3 + x [C] $x^3 - 3x^2 - 9x + 27$ [D] $-x^2 - x + 12$
- 2. If $f(x) = 4 x^2$ and g(x) = 2 x, which is the rule of function $(f \cdot g)(x)$? [A] $-x^2 - x + 6$ [B] $-x^2 + x + 2$ [C] $x^3 - 2x^2 - 4x + 8$ [D] 2 + x
- 3. If $f(x) = 16 x^2$ and g(x) = 4 x, which is the rule of function $\frac{f}{g}(x)$? [A] $x^3 - 4x^2 - 16x + 64$ [B] $-x^2 + x + 12$ [C] $-x^2 - x + 20$ [D] 4 + x
- 4. If $f(x) = 25 x^2$ and g(x) = 5 x, which is the rule of function (f g)(x)? [A] $x^3 - 5x^2 - 25x + 125$ [B] 5 + x [C] $-x^2 + x + 20$ [D] $-x^2 - x + 30$
- 5. If $f(x) = 1 x^2$ and g(x) = 1 x, which is the rule of function (f + g)(x)? [A] $x^3 - x^2 - x + 1$ [B] $-x^2 + x$ [C] 1 + x [D] $-x^2 - x + 2$
- 6. If $f(x) = 9 x^2$ and g(x) = 3 x, which is the rule of function $(f \cdot g)(x)$? [A] $-x^2 - x + 12$ [B] 3 + x [C] $x^3 - 3x^2 - 9x + 27$ [D] $-x^2 + x + 6$
- 7. If $f(x) = 4 x^2$ and g(x) = 2 x, which is the rule of function $\frac{f}{g}(x)$? [A] $x^3 - 2x^2 - 4x + 8$ [B] $-x^2 - x + 6$ [C] $-x^2 + x + 2$ [D] 2 + x
- 8. If $f(x) = 16 x^2$ and g(x) = 4 x, which is the rule of function (f g)(x)? [A] $-x^2 + x + 12$ [B] 4 + x [C] $x^3 - 4x^2 - 16x + 64$ [D] $-x^2 - x + 20$
- 9. If $f(x) = 25 x^2$ and g(x) = 5 x, which is the rule of function (f + g)(x)? [A] $-x^2 - x + 30$ [B] 5 + x [C] $-x^2 + x + 20$ [D] $x^3 - 5x^2 - 25x + 125$

10. If
$$f(x) = 1 - x^2$$
 and $g(x) = 1 - x$, which is the rule of function $(f \cdot g)(x)$?
[A] $x^3 - x^2 - x + 1$ [B] $-x^2 - x + 2$ [C] $1 + x$ [D] $-x^2 + x$

11. If $f(x) = 9 - x^2$ and g(x) = 3 - x, which is the rule of function $\frac{f}{g}(x)$?

[A]
$$3+x$$
 [B] $-x^2-x+12$ [C] $-x^2+x+6$ [D] $x^3-3x^2-9x+27$

12. If $f(x) = 4 - x^2$ and g(x) = 2 - x, which is the rule of function (f - g)(x)? [A] $x^3 - 2x^2 - 4x + 8$ [B] 2 + x [C] $-x^2 + x + 2$ [D] $-x^2 - x + 6$

13. If $f(x) = 16 - x^2$ and g(x) = 4 - x, which is the rule of function (f + g)(x)? [A] 4 + x [B] $x^3 - 4x^2 - 16x + 64$ [C] $-x^2 - x + 20$ [D] $-x^2 + x + 12$

14. If
$$f(x) = 25 - x^2$$
 and $g(x) = 5 - x$, which is the rule of function $(f \cdot g)(x)$?
[A] $x^3 - 5x^2 - 25x + 125$ [B] $-x^2 - x + 30$ [C] $-x^2 + x + 20$ [D] $5 + x$

- 15. If $f(x) = 1 x^2$ and g(x) = 1 x, which is the rule of function $\frac{f}{g}(x)$? [A] 1 + x [B] $x^3 - x^2 - x + 1$ [C] $-x^2 - x + 2$ [D] $-x^2 + x$
- 16. If $f(x) = 9 x^2$ and g(x) = 3 x, which is the rule of function (f g)(x)? [A] $x^3 - 3x^2 - 9x + 27$ [B] $-x^2 - x + 12$ [C] $-x^2 + x + 6$ [D] 3 + x
- 17. If $f(x) = 4 x^2$ and g(x) = 2 x, which is the rule of function (f + g)(x)? [A] 2 + x [B] $-x^2 - x + 6$ [C] $-x^2 + x + 2$ [D] $x^3 - 2x^2 - 4x + 8$
- 18. If $f(x) = 16 x^2$ and g(x) = 4 x, which is the rule of function $(f \cdot g)(x)$? [A] $-x^2 + x + 12$ [B] $x^3 - 4x^2 - 16x + 64$ [C] $-x^2 - x + 20$ [D] 4 + x
- 19. If $f(x) = 25 x^2$ and g(x) = 5 x, which is the rule of function $\frac{f}{g}(x)$? [A] 5 + x [B] $-x^2 + x + 20$ [C] $-x^2 - x + 30$ [D] $x^3 - 5x^2 - 25x + 125$

20. If $f(x) = 1 - x^2$ and g(x) = 1 - x, which is the rule of function (f - g)(x)? [A] $-x^2 + x$ [B] 1 + x [C] $-x^2 - x + 2$ [D] $x^3 - x^2 - x + 1$

21.	If $f(x) = 81 - x^2$ and $g(x) = 9 - x$, which is the rule of the function $(f \cdot g)(x)$?
	[A] $9+x$ [B] $-x^2+x+72$ [C] $-x^2-x+90$ [D] $x^3-9x^2-81x+729$
22.	If $f(x) = 81 - x^2$ and $g(x) = 9 - x$, which is the rule of the function $\left(\frac{f}{g}\right)(x)$?
	[A] $x^3 - 9x^2 - 81x + 729$ [B] $9 + x$ [C] $-x^2 + x + 72$ [D] $-x^2 - x + 90$
23.	If $f(x) = 36 - x^2$ and $g(x) = 6 - x$, which is the rule of the function $(f - g)(x)$?
	[A] $6+x$ [B] $x^3-6x^2-36x+216$ [C] $-x^2+x+30$ [D] $-x^2-x+42$
24.	If $f(x) = 64 - x^2$ and $g(x) = 8 - x$, which is the rule of the function $(f + g)(x)$?
	[A] $8+x$ [B] $x^3-8x^2-64x+512$ [C] $-x^2-x+72$ [D] $-x^2+x+56$
25.	If $f(x) = 81 - x^2$ and $g(x) = 9 - x$, which is the rule of the function $(f - g)(x)$?
	[A] $-x^2 + x + 72$ [B] $-x^2 - x + 90$ [C] $9 + x$ [D] $x^3 - 9x^2 - 81x + 729$
26.	If $f(x) = 36 - x^2$ and $g(x) = 6 - x$, which is the rule of the function $(f \cdot g)(x)$?
	[A] $x^3 - 6x^2 - 36x + 216$ [B] $-x^2 + x + 30$ [C] $-x^2 - x + 42$ [D] $6 + x$
27.	If $f(x) = 36 - x^2$ and $g(x) = 6 - x$, which is the rule of the function $(f + g)(x)$?
	[A] $-x^2 + x + 30$ [B] $6+x$ [C] $-x^2 - x + 42$ [D] $x^3 - 6x^2 - 36x + 216$
28.	If $f(x) = 36 - x^2$ and $g(x) = 6 - x$, which is the rule of the function $\left(\frac{f}{g}\right)(x)$?
	[A] $-x^2 - x + 42$ [B] $6 + x$ [C] $-x^2 + x + 30$ [D] $x^3 - 6x^2 - 36x + 216$
29.	If $f(x) = 64 - x^2$ and $g(x) = 8 - x$, which is the rule of the function $\left(\frac{f}{g}\right)(x)$?
	[A] $-x^2 - x + 72$ [B] $-x^2 + x + 56$ [C] $x^3 - 8x^2 - 64x + 512$ [D] $8 + x$
30.	If $f(x) = 64 - x^2$ and $g(x) = 8 - x$, which is the rule of the function $(f \cdot g)(x)$?
	[A] $x^3 - 8x^2 - 64x + 512$ [B] $-x^2 + x + 56$ [C] $8 + x$ [D] $-x^2 - x + 72$

- 31. If $f(x) = 64 x^2$ and g(x) = 8 x, which is the rule of the function (f g)(x)? [A] $-x^2 - x + 72$ [B] $x^3 - 8x^2 - 64x + 512$ [C] 8 + x [D] $-x^2 + x + 56$
- 32. If $f(x) = 49 x^2$ and g(x) = 7 x, which is the rule of the function $(f \cdot g)(x)$? [A] $-x^2 - x + 56$ [B] $x^3 - 7x^2 - 49x + 343$ [C] 7 + x [D] $-x^2 + x + 42$
- 33. If $f(x) = 49 x^2$ and g(x) = 7 x, which is the rule of the function $\left(\frac{f}{g}\right)(x)$? [A] $x^3 - 7x^2 - 49x + 343$ [B] $-x^2 + x + 42$ [C] $-x^2 - x + 56$ [D] 7 + x
- 34. If $f(x) = 81 x^2$ and g(x) = 9 x, which is the rule of the function (f + g)(x)? [A] $x^3 - 9x^2 - 81x + 729$ [B] 9 + x [C] $-x^2 + x + 72$ [D] $-x^2 - x + 90$
- 35. If $f(x) = 49 x^2$ and g(x) = 7 x, which is the rule of the function (f g)(x)? [A] $-x^2 + x + 42$ [B] $-x^2 - x + 56$ [C] 7 + x [D] $x^3 - 7x^2 - 49x + 343$
- 36. If $f(x) = 49 x^2$ and g(x) = 7 x, which is the rule of the function (f + g)(x)? [A] $x^3 - 7x^2 - 49x + 343$ [B] $-x^2 + x + 42$ [C] $-x^2 - x + 56$ [D] 7 + x
- 37. If $f(x) = 16 x^2$ and g(x) = 4 x, find the rule of the function (f g)(x).
- 38. If $f(x) = 4 x^2$ and g(x) = 2 x, find the rule of the function $(f \cdot g)(x)$.
- 39. If $f(x) = 1 x^2$ and g(x) = 1 x, find the rule of the function $\frac{f}{g}(x)$.
- 40. If $f(x) = 9 x^2$ and g(x) = 3 x, find the rule of the function (f + g)(x).

41. For the pair of functions, f and g, find $(f \circ g)(x)$ and $(g \circ f)(x)$. f(x) = 3-7x, $g(x) = x^2 - 1$ [A] $(f \circ g)(x) = x^2 - 7x - 2$ $(g \circ f)(x) = -7x^2 + 8x$ [B] $(f \circ g)(x) = 49x^2 - 42x + 8$ $(g \circ f)(x) = x^2 - 7x + 2$ [C] $(f \circ g)(x) = x^2 - 7x + 2$ $(g \circ f)(x) = -7x^2 + 10$ [D] $(f \circ g)(x) = -7x^2 + 10$ $(g \circ f)(x) = 49x^2 - 42x + 8$

42. For the pair of functions, *f* and *g*, find (g ∘ f)(x) and (f ∘ g)(x).
f(x) = 4-5x, g(x) = 5x-7
[A] (g ∘ f)(x) = -25x+13
[B] (g ∘ f)(x) = -3

 $(f \circ g)(x) = -25x + 39$ $(f \circ g)(x) = -25x + 13$ $(f \circ g)(x) = -25x + 39$ $(f \circ g)(x) = -25x + 13$ $(C] (g \circ f)(x) = 3$ $(f \circ g)(x) = 25x - 13$ $(f \circ g)(x) = 25x + 13$ $(f \circ g)(x) = -3$

43. For the pair of functions, *f* and *g*, find $(f \circ g)(x)$ and $(g \circ f)(x)$. f(x) = 6 + 3x, $g(x) = x^2 - 2$

- [A] $(f \circ g)(x) = x^2 + 3x + 4$ $(g \circ f)(x) = 3x^2$ [B] $(f \circ g)(x) = 3x^2$ $(g \circ f)(x) = 9x^2 + 36x + 34$
- [C] $(f \circ g)(x) = x^2 + 3x 4$ $(g \circ f)(x) = 3x^2 + 34x$ [D] $(f \circ g)(x) = 9x^2 + 36x + 34$ $(g \circ f)(x) = x^2 + 3x - 4$

44. For the pair of functions, f and g, find $(g \circ f)(x)$ and $(f \circ g)(x)$. f(x) = 2 + 4x, g(x) = x - 1

[A] $(g \circ f)(x) = -4x - 1$	[B] $(g \circ f)(x) = 5x + 1$
$(f \circ g)(x) = 5x + 1$	$(f \circ g)(x) = 4x + 1$
[C] $(g \circ f)(x) = 4x + 1$	[D] $(g \circ f)(x) = -5x - 1$
$(f \circ g)(x) = 4x - 2$	$(f \circ g)(x) = -4x + 1$

- 45. For the pair of functions, f and g, find $(f \circ g)(x)$ and $(g \circ f)(x)$. f(x) = 5+6x, g(x) = 2x-4
 - [A] $(f \circ g)(x) = 12x 19$
 $(g \circ f)(x) = 12x + 6$ [B] $(f \circ g)(x) = 8x + 1$
 $(g \circ f)(x) = 12x 19$ [C] $(f \circ g)(x) = -12x + 19$
 $(g \circ f)(x) = 8x + 1$ [D] $(f \circ g)(x) = -8x 1$
 $(g \circ f)(x) = -12x 19$

46. For the pair of functions, f and g, find $(f \circ g)(x)$ and $(g \circ f)(x)$. f(x) = 3+2x, g(x) = 5x+3

- [A] $(f \circ g)(x) = -7x 6$
 $(g \circ f)(x) = -10x + 9$ [B] $(f \circ g)(x) = 10x + 9$
 $(g \circ f)(x) = 10x + 18$ [C] $(f \circ g)(x) = -10x 9$
 $(g \circ f)(x) = 7x + 6$ [D] $(f \circ g)(x) = 7x + 6$
 $(g \circ f)(x) = 10x + 9$
- 47. For the pair of functions, f and g, find $(g \circ f)(x)$ and $(f \circ g)(x)$. f(x) = 6+5x, $g(x) = x^2 + 2$
 - [A] $(g \circ f)(x) = 5x^2 + 16$ $(f \circ g)(x) = x^2 + 5x - 8$ [B] $(g \circ f)(x) = 25x^2 + 60x + 38$ $(f \circ g)(x) = x^2 + 5x - 8$ [D] $(g \circ f)(x) = x^2 + 5x - 8$
 - $(f \circ g)(x) = 25x^2 + 60x + 38$ $(f \circ g)(x) = 25x^2 + 16x + 60$

48. For the pair of functions, f and g, find $(f \circ g)(x)$ and $(g \circ f)(x)$. f(x) = 2 + 3x, g(x) = 2x - 2

[A] $(f \circ g)(x) = 5x$ [B] $(f \circ g)(x) = -6x + 4$ $(g \circ f)(x) = 6x - 4$ $(g \circ f)(x) = 5x$ [C] $(f \circ g)(x) = 6x - 4$ [D] $(f \circ g)(x) = -5x$ $(g \circ f)(x) = 6x + 2$ $(g \circ f)(x) = -6x - 4$

49. For the pair of functions, f and g, find $(g \circ f)(x)$ and $(f \circ g)(x)$. f(x) = 5 - 4x, $g(x) = x^2 + 4$ [A] $(g \circ f)(x) = x^2 - 4x + 9$ $(f \circ g)(x) = 16x^2 - 40x + 29$ [B] $(g \circ f)(x) = 16x^2 - 40x + 29$ $(f \circ g)(x) = -4x^2 - 11$

[C] $(g \circ f)(x) = x^2 - 4x - 9$ $(f \circ g)(x) = 16x^2 - 11x - 40$ [D] $(g \circ f)(x) = -4x^2 - 11$ $(f \circ g)(x) = x^2 - 4x - 9$

50. For the pair of functions, f and g, find $(f \circ g)(x)$ and $(g \circ f)(x)$. f(x) = 1 - 6x, g(x) = 5x - 4[A] $(f \circ g)(x) = -x - 3$ $(g \circ f)(x) = -30x + 25$ [B] $(f \circ g)(x) = -30x + 25$ (C] $(f \circ g)(x) = x + 3$ $(g \circ f)(x) = 30x + 25$ [D] $(f \circ g)(x) = 30x - 25$ $(g \circ f)(x) = 30x + 25$

- 51. For the pair of functions, f and g, find $(g \circ f)(x)$ and $(f \circ g)(x)$. f(x) = 3+2x, g(x) = 5x+6
- 52. For the pair of functions, f and g, find $(f \circ g)(x)$ and $(g \circ f)(x)$. f(x) = 6 + 3x, $g(x) = x^2 + 3$
- 53. For the pair of functions, f and g, find $(g \circ f)(x)$ and $(f \circ g)(x)$. f(x) = 1+7x, g(x) = x-2
- 54. For the pair of functions, f and g, find $(f \circ g)(x)$ and $(g \circ f)(x)$. f(x) = 5 + 6x, $g(x) = x^2 - 1$
- 55. For the pair of functions, f and g, find $(g \circ f)(x)$ and $(f \circ g)(x)$. f(x) = 2 + x, g(x) = 4x - 7
- 56. For the pair of functions, f and g, find $(f \circ g)(x)$ and $(g \circ f)(x)$. f(x) = 4 + 5x, $g(x) = x^2 - 4$

- 57. For the pair of functions, f and g, find $(f \circ g)(x)$ and $(g \circ f)(x)$. f(x) = 3-4x, g(x) = 3x-1
- 58. For the pair of functions, f and g, find $(g \circ f)(x)$ and $(f \circ g)(x)$. $f(x) = 6+2x, g(x) = x^2 - 1$
- 59. For the pair of functions, f and g, find $(f \circ g)(x)$ and $(g \circ f)(x)$. f(x) = 1+3x, g(x) = 2x-7
- 60. For the pair of functions, f and g, find $(g \circ f)(x)$ and $(f \circ g)(x)$. f(x) = 5-7x, $g(x) = x^2 - 2$